
Cambridgeshire Progression in Computing Capability

DRAFT (September 2014)

 info@theictservice.org.uk

 Cambridgeshire County Council 2014. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Contains public sector
information licensed under the Open Government Licence v2.0.

Programming:

Purpose of study ~ Computing programmes of study: Key stages 1 and 2

A high-quality computing education equips pupils to use computational thinking and creativity to understand and change the world.

Computing has deep links with mathematics, science, and design and technology, and provides insights into both natural and artificial systems.

The core of computing is computer science, in which pupils are taught the principles of information and computation, how digital systems work,

and how to put this knowledge to use through programming.

Building on this knowledge and understanding, pupils are equipped to use information technology to create programs, systems and a range of

content. Computing also ensures that pupils become digitally literate – able to use, and express themselves and develop their ideas through,

information and communication technology – at a level suitable for the future workplace and as active participants in a digital world.

Aims:

 The national curriculum for computing aims to ensure that all pupils:

 can understand and apply the fundamental principles and concepts of computer science, including abstraction, logic, algorithms and

data representation

 can analyse problems in computational terms, and have repeated practical experience of writing computer programs in order to solve

such problems

 can evaluate and apply information technology, including new or unfamiliar technologies, analytically to solve problems

 are responsible, competent, confident and creative users of information and communication technology.

Theme Overview: Programming

It’s worth noting that computer science aims to cover two distinct, but related, aspects. There’s a focus on computer science itself (the ideas

and principles that underpin how digital technology works) but this sits alongside the practical experience of programming, almost certainly the

best way for primary pupils to learn about computer science.

Computer Science is more than programming, but programming is an absolutely central process for Computer Science. In an educational

context, programming encourages creativity, logical thought, precision and problem-solving, and helps foster the personal, learning and

thinking skills required in the modern school curriculum. Programming gives concrete, tangible form to the idea of “abstraction”, and repeatedly

shows how useful it is.

Computing at School (CAS) March 2012: Computing in the National Curriculum – A Guide for Primary Teachers

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.computingatschool.org.uk/data/uploads/CASPrimaryComputing.pdf

Cambridgeshire Progression in Computing Capability

DRAFT (September 2014)

 info@theictservice.org.uk

 Cambridgeshire County Council 2014. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Contains public sector
information licensed under the Open Government Licence v2.0.

 Early Capability Middle Capability Later Capability

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

N
a

ti
o

n
a

l C
u

rr
ic

u
lu

m

 Understand what algorithms are; how they are

implemented as programs on digital devices; and

that programs execute by following precise and

unambiguous instructions

 Create and debug simple programs

 Use logical reasoning to predict the behaviour of

simple programs

 Design, write and debug programs that accomplish specific goals, including controlling or simulating physical systems;

solve problems by decomposing them into smaller parts

 Use sequence, selection, and repetition in programs; work with variables and various forms of input and output

 Use logical reasoning to explain how some simple algorithms work and to detect and correct errors in algorithms and

programs

C
a

m
b

ri
d

g
e

sh
ir
e

 C
a

p
a

b
ili

ty

S
ta

te
m

e
n

ts

Pupils create, debug and

implement instruction

(simple algorithms) as

programs on a range of

digital devices.

Pupils understand that

digital devices follow

precise and unambiguous

instructions.

Pupils understand that

digital devices simulate

real situations.

Pupils understand that

algorithms are

implemented as programs

on digital devices.

Pupils create and debug

programs to achieve

specific goals.

Pupils use the principles of

logical reasoning to plan

and predict the behaviour

of simple programs.

Pupils solve real and

imaginary problems on

and off screen.

Pupils create programs to

accomplish specific goals:

- using an increasing

range of digital devices

and applications.

- exploring and

understanding the

impact of changing

instructions.

- using sequence and

repetition

- decomposing problems

both on and off screen

- using the principles of

logical reasoning in

order to resolve

problems.

Pupils create and debug

programs:

- using sequence and

repetition.

- refining algorithms to

improve efficiency

- controlling or simulating

physical systems.

Pupils begin to explore and

notice the similarities and

differences between

programming languages and

use this knowledge to help

them create and debug

programs efficiently.

Pupils create, deconstruct

and refine programs to

accomplish specific goals.

They can:

- improve efficiency

- use selection within

programs

- use a range of simple

inputs and outputs to

control or simulate

physical systems.

Pupils use logical reasoning

to explain how some

algorithms work and to

detect and correct errors in

programs.

They independently employ

strategies to solve problems.

Pupils deconstruct, improve

and create programs

including:

- using selection and

working with variables.

- using the principles of

logical reasoning

- challenging themselves

by making simple

programs increasingly

complex and employ a

variety of strategies to

solve problems.

Pupils can explain why they

have structured algorithms as

they have and describe the

effect this has on a program.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

Cambridgeshire Progression in Computing Capability

DRAFT (September 2014)

 info@theictservice.org.uk

 Cambridgeshire County Council 2014. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Contains public sector
information licensed under the Open Government Licence v2.0.

 Early Capability Middle Capability Later Capability

 Year 1 Year 2 Year 3 Year 4 Year 5 Year 6

R
e

so
u

rc
e

 D
e

sc
ri
p

ti
o

n

 Simple programmable robot (e.g. BeeBot)

 Problem solving / early logo apps (Kodable,

Daisy the Dinosaur)

 Simple on screen control software (2Go,

Textease Turtle)

 Logic problems / puzzles –

(e.g…http://nrich.maths.org)

Weblinks

 CS4FN (Computer Science for Fun)

 CS unplugged (Computer Science Unplugged)

 More complex floor robots (e.g. Probots, roamers)

 Logo software (e.g. Textease Turtle, Imagine Logo)

 Programming apps / software (e.g. Hopscotch,

Scratch)

 Logic problems / maths puzzles

 Physical systems: models, buzzers, bulbs, control

boxes (e.g. Flowgo boxes)and leads, building kits

(e.g. Lego, K’nex)

Weblinks

 CS4FN (Computer Science for Fun)

 CS unplugged (Computer Science Unplugged)

 http://www.code-it.co.uk/

 Physical systems: models, buzzers, bulbs, control

boxes (e.g. Flowgo boxes) and leads, building kits

(e.g. Lego, K’nex)

 Flowchart based control software (e.g. Flowol4,

CoCo)

 Programming apps / software (e.g. Hopscotch,

Scratch)

Weblinks

 CS4FN (Computer Science for Fun)

 CS unplugged (Computer Science Unplugged)

 www.webmaker.org. (for teacher use and possible

demonstration)

 http://www.code-it.co.uk/

NB – none of these products are endorsed by The ICT Service, nor is this list of resources in any way exhaustive. This simply reflects some of the resources we know are readily available in

schools already or are free to use.

E
x
a

m
p

le
 A

c
ti
v
it
ie

s

(P
lu

g
g

e
d

 /
 u

n
p

lu
g

g
e

d
)

Role-play acting as

‘human robots’, predicting

what will happen and

finding and fixing errors

(bugs) along the way.

Implement algorithms as

programs on Beebots to,

for example, find their way

to a given point on a

map.

Create visual algorithms

using flashcards for e.g.

BeeBots. Challenge pupils

to create increasingly

complex programs such as

enacting some of the

Beebot app levels.

Program on-screen

simulations through online

resources / early block

languages (e.g. Daisy the

Dinosaur app or 2Go).

Use an on-screen logo

program to draw simple

shapes such as a rocket ship

or house. Find and correct

errors (debug) to achieve

each goal efficiently.

Create simple animations

using move, say and sound

commands in Scratch e.g.

launch a rocket ship using a

drum roll and a countdown.

Draw simple 2D shapes using

repeating instructions (e.g.

draw a square by drawing a

line, turning 90o and then

repeating this 4 times).

Replicate this on screen using

logo software or a block

programming app such as

Hopscotch.

Create a ‘rolling ball’ maze

game in Scratch, thinking

carefully about how the ball

will move and what

obstacles players will face.

Program on screen

simulations such as traffic

lights or fairground rides using

software such as Flowol4.

Begin to control models with

bulbs, buzzers and motors

and include switches to

control the sequence of

actions.

Create a greetings card in

Scratch using the ‘broadcast

message’ command and a

variable where users can

add their own name.

Create more complex, 2

player ‘bumper cars’ game

with consequences built in

for crashing into each other

or the ‘barriers’. How many

players can you

accommodate? ‘Pitch’ your

coding skills in an

‘apprentice’ style scenario,

explaining how you’ve been

efficient and why your game

is better than anyone else’s!

Use constructions kits to build

physical models

incorporating bulbs, buzzers,

motors and a selection of

switches.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/
http://www.tts-group.co.uk/shops/tts/Products/PD1723538/Bee-Bot-Floor-Robot/
http://www.surfscore.com/
http://www.daisythedinosaur.com/
http://www.2simple.com/products
http://www.textease.com/turtle/
http://nrich.maths.org/
http://www.cs4fn.org/
http://csunplugged.org/
http://www.textease.com/turtle/
http://www.logotron.co.uk/imagine/
https://www.gethopscotch.com/
http://scratch.mit.edu/
http://www.dataharvest.co.uk/products.php?&g=tec&ppg=tec&a=pri&ppa=pri&t=cd&code=3553&cat=control_packs
file://cambsed.net/users$/cthompson.c9s/documents/National%20Curriculum/Capability%20docs%202013%201st%20draft/Theme%20overviews/Lego
http://www.knex.com/knex-education/
http://www.cs4fn.org/
http://csunplugged.org/
http://www.code-it.co.uk/
http://www.dataharvest.co.uk/products.php?&g=tec&ppg=tec&a=pri&ppa=pri&t=cd&code=3553&cat=control_packs
http://education.lego.com/en-gb
http://www.knex.com/knex-education/
http://www.flowol.com/Flowol4.aspx
https://www.gethopscotch.com/
http://scratch.mit.edu/
http://www.cs4fn.org/
http://csunplugged.org/
http://www.webmaker.org/
http://www.code-it.co.uk/

Cambridgeshire Progression in Computing Capability

DRAFT (September 2014)

 info@theictservice.org.uk

 Cambridgeshire County Council 2014. This work is licensed
under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0
International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-nc-sa/4.0/. Contains public sector
information licensed under the Open Government Licence v2.0.

In September 2012, the DfE disapplied the ‘Programmes of Study, associated attainment targets and statutory assessment arrangements for ICT’. Cambridgeshire suggests the following approach to

assessing Computing capability and we will continue to update our guidance as further information is available nationally.

The Assessment Process:

The DfE document ‘Primary assessment and accountability under the new national curriculum’

(July 2013) clearly states that ‘schools will be able to introduce their own approaches to

formative assessment’. Whichever approach schools choose to adopt, appropriate, targeted

questioning should continue to form an essential part of the assessment process in helping

pupils to articulate their learning. The following sample questions and statements are designed

to support teachers in using effective, open ended questions to collect evidence about what

their pupils have learned.

Plan Computing as both discrete and embedded learning
opportunities using the Cambridgeshire materials, including provision

for idenitifed pupils / groups

Use your school's agreed formative assessment procedures for
recording children's on-going progress

Complete group / class / cohort summative assessment of pupil's
Computing capability using

End of Year Assessment Grids

Use summative assessment data to make end of key stage
judgements for pupils against the National Curriculum requirements

and report these to parents

Analyse summative assessment data to set targets and identify
individual pupils or groups of pupils

What do you do to keep

your personal details as

safe online as they are in

the real world?

Why did you choose that

image / font / sound /

video?

What differences are

there between your

approach and your

friend’s?

Tell me more about what

you’ve learned today.

What made you think of

that solution / change /

way of working?

How will that choice

effect your ‘audience’?

What do you think might

happen? What will you

do if it doesn’t happen

that way?

How will you know that

you’ve chosen the best

music for your film?

What did you

notice when…?

Tell me how this

works.

What will you do

differently next

time? Why?

What new

words did

you learn /

use today?

How else could

you solve that

problem?

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/

